If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(21x)^2+(9x)^2=29^2
We move all terms to the left:
(21x)^2+(9x)^2-(29^2)=0
We add all the numbers together, and all the variables
30x^2-841=0
a = 30; b = 0; c = -841;
Δ = b2-4ac
Δ = 02-4·30·(-841)
Δ = 100920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{100920}=\sqrt{3364*30}=\sqrt{3364}*\sqrt{30}=58\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-58\sqrt{30}}{2*30}=\frac{0-58\sqrt{30}}{60} =-\frac{58\sqrt{30}}{60} =-\frac{29\sqrt{30}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+58\sqrt{30}}{2*30}=\frac{0+58\sqrt{30}}{60} =\frac{58\sqrt{30}}{60} =\frac{29\sqrt{30}}{30} $
| 15-(14-3x)+5=2(4x+3) | | 10x+6=8x+10 | | 14+5=-5x(-3x+15)+5 | | -18=6+4v | | 5x²=12x | | 5x2-23x-42=0 | | 44+45h=26.95 | | F(x)=2(9x^2-4x+8)-6(3x^2+7x-2) | | 1/2x+2/3=(3)2/3 | | 3x+-2x=4 | | 9(1x-5)=8(1x+5) | | 4b+6=2–b+4 | | y=52+8 | | -|-18|+10=y | | 266=165-x | | 4x+6=2x-70 | | 4n-(7-6n)=10-7n | | |-4a-9|=9 | | 20x-0.5=4x | | |3y+9|=21 | | (9t^2+3t-5)+(t^2-t+4)=0 | | -|-18|+10=x | | 2d+4=10+5d2 | | 90=7x+17+3x-20 | | 2+7/9x=5/6 | | 4/11x=-8 | | 36=3n.4 | | 75-v=167 | | 18x+1/2=18x+150 | | 4n-(7-6n)=10 | | 150=30+20x | | 7x-10=2(x-10) |